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The far-field noise generated by a system of three Gaussian vorti-
ces lying over a fiat boundary is numerically investigated using a
two-dimensional vortex element method, The method is based on
the discretization of the vorticity field into a finite number aof
smoothed vortex elements of spherical overlapping cores. The ele-
ments are convected in a Lagrangfan reference along particle trajec-
tories using the local veiocity vector, given in terms of a desingular-
ized Biot-Savart faw. The initial structure of the vortex system is
trianguiar; a one-dimensional famity of initial configurations is con-
structed by keeping one side of the triangle fixed and vertical, and
varying the abscissa of the centroid of the remaining vortex. The
tnviscid dynamics of this vortex configuration are first investigated
using non-deformable vortices. Depending on the aspect ratio of
the initial systern, regutar or chaotic motion occurs. Due to wall-
related symmetries, the far-field sound always exhibits a time-inde-
pendent guadrupolar directivity with maxima paralle! and perpen-
dicutar to the wall. When regular motion prevails, the noise spec-
trum is daminated by discrete frequencies which correspond to the
fundamental systern frequency and its superharmonics. For chaatic
motion, a broadband spectrum is obtained; computed soundleveais
are substantially higher than in non-chaotic systems, A more sophis-
ticated analysis is then performed which accounts for vortex core
dynamics. Results show that the vortex cores are susceptible to
inviscid instability which leads to violent vorticity reorganization
within the core. This phenomenan has little effect on the large-scale
features of the motion of the system or on low frequency sound
emission. However, it leads to the generation of a high-frequency
noise band in the acoustic pressure spectrum. The latter is observed
in both regutar and chaolic systern simulations. © 1895 Academic
Prass, inc,

1. INTRODUCTION

Point-vortex representations have long been used to simulate
the motion of systems of concentrated vortices. The advantages
of this approach are many, including its algorithmic simplicity
and the efficiency of the representation. Simplified model solu-

tions have proven to be useful in elucidating the underlying
dynamics of a wide class of incompressible shear flows, namely
those dominated by the essentially inviscid motion of 2D con-
centrated vortical structures.

Point-vortices have also been used to investigate the onset
and properties of chaotic fluid motion [1]. In an unbounded
domain, it has been established that a minimum of four point
vortices are needed for chaotic motion to occur. This resuit
derives immediately from the studies of Novikov (2] and Aref
[3], which show that three-vortex systems in free space are
chavacterized by regular trajectories. Subsequent studies [4, 5]
indicated that this minimum can in fact be reached, as chaotic
four-vortex problems were found and analyzed.

However, in the presence of a slip boundary, the presence
of three point-vortices has been found sufficient for chaotic
motion to occur. The study of Murty and Rao [6], which
considered the evolution of point vortices inside a cylinder,
provided an early example. These findings were later amplified
in {7}, which revealed that the presence of a potential
boundary may play an important role in the transition to
chaotic motion.

Due to its relevance to a large number of noise generation
prohlems, the chaotic evolution of systemns of concentrated
vortices close 1o solid boundarics has motivated investigations
of the sound emitted by such motion. Thus, Conlisk et al.
[8] analyzed the evolution of chaotic and regular three-vortex
systems above a flat boundacy. Their results indicate that
the chaotic behavior of the system results in a broadband
near-field pressure spectrum. This problem was reconsidered
by Collorec et al. {9] who performed a more detailed analysis
of the noise radiation. In particular, their study shows that
chaotic motion also results in a broadband far-field spec-
trum {10].

Unfortunately, the construction and . implementation of
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point-vortex modeis inherently ignores the effects of core
vorticity distributions and internal dynamics. Obviously, vor-
tex core dynamics are expecled to have little impact on the
broad features of system evolution whenever concentrated
vortices remain well-separated. However, the transition to
chaotic motion is often accompanied by strong vortex interac-
tions and by the development of violent strain fields. The
occurrence of such phenomena raises some fundamental
questions regarding both the evolution of the system and the
corresponding notse emission, Thus, even in situations where
vortices remain well-separated, the impact of core deformation
on chaotic system behavior and radiaied noise has not been
fully investigated.

In this work, the issue is addressed using a two-dimensional
vortex element method to simulate the evolution of the
vorticity field. The present implementation also focuses on
the same initial configurations previously considered in |8,
9]. This selection is motivated by the relative simplicity of
the flow geomeiry which, nonetheless, allows us to observe
a wide range of evolution regimes. Another advantage of
the reiatively simple configuration of the vorticity field is
that it enmables us to directly take advantage of acoustic
analogy theory in order to calculate the f{ar-field noise.
Although Lighthill’s original formulation {11] has proven to
be useful in a large number of applications, the versions

developed by Powell [12), Hardin [13], and Mohring [14]

are preferred as they estimate the far-field pressure in terms
of a convolution over the vorticity field [15]. However,
since these formulations typically assume a compact three-
dimensional vorticity field, their application remains compli-
cated by our present restriction to two-dimensional flow [16].
In a first approach, this difficulty is avoided by restricting
the convolution to a finite length along the axis of the
vortices. The validity of this approxunate approach is then
tested using a detailed two-dimensional analysis recently
proposed by Mitchell et al. [17].

In analyzing the impact of core dynamics on flowfield
behavior, the adopted approach cails for comparing the predic-
tions of three modelling approaches: (i) the point-vortex
approximation, (i) a frozen-core Gausstan model, and (iii)
detailed vortex element computations. Construction of these
models 18 summarized in Section 2, which also details
procedures used to compute the acoustic farfield. Results of
the simulations are given and discussed in Section 3. Major
conclusions are summarized in Section 4.

2. FORMULATION AND NUMERICAL SCHEMES

2.1. Formulation

In ail calculations presented, a two-dimensional, inviscid,
incompressible, unsteady flow is assumed. Under these assump-
tions, the flowfield is governed by the vorticity transport and
continuity equations which, in a right-handed coordinate sys-
tem, (x, y), are respectively expressad as
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o =0 (H
Vou=0, (2

where n is the velocity vector, 7 is time, w = V X u is the
vorticity, /Dt = 3/dr + u -V is the material derivative, and
V = (8/0x, 8/8y) is the gradient operator. The velocity field
is related to the vorticity through the well-known Biot—-Savart
law [18],

wx, 0 = { afy, ) X VG(x — y) dy + V¢, 3)

where

G(x) = ﬁln([x]) (4)

is the Green’s function of the 2D Poisson equation, and ¢ is
a potential function needed to satisfy potential boundary condi-
tions.

2.2. Flowfield Simulation

As previously mentioned, simulation of the governing equa-
tions is performed using a two-dimensional vortex method.
Since these methods have been extensively discussed in the
literature (e.g., [19-207), present implementations are briefly
summarized. Construction of the numerical scheme starts with
the discretization of the vorticity field into smoothed Lagrangian
elements, using the expression [21--23]

N

W(X, 1) = >, @ (DX — %),

i=1

(5)

where w;(1), y{1), and h} respectively denote the vorticity, La-
grangian location, and ‘‘volume’ of the ith vortex element,
and N is the total number of elements. In Eq. (5), f; denotes a
rapidly decaying ‘‘spherical’’ core function used 1o smooth the
particle vorticity, we let

1 fr
s0 that & represents the radius of the ““sphere’” where most of

the vorticity of the element is concentrated. In this work, the
second-order Gaussian core function

) =1e (7)

is used. As shown by Beale and Majda [24], this choice yiclds
an essentially second-order vortex element scheme.
According to the particle discretization given in Eq. (5),



228

the evolution of the vorticity and Lagrangian location of the
elements must be obtained in order to determine the motion of
the vorticity field. Since the locations y,(z) correspond to mate-
rial particles, their evolution is governed by

dx{:
0 < w0 ®)
The velocity field is determined by inserting Eq. (5) into Eq.
(3) and performing the integration; the result is expressed in
terms of the desingularized Biot~Savart law,

x— ) xXk

VO 5 & D TR o

k(X — xi(D), (9

where k is the unit normal to the plane of motion, T, = w;h?
is the circolation of the element, and «;1s the velocity smoothing
kernel corresponding to f5:

Ks(X) = & (‘!%l),

For f given by Bq. (7), x(r = 1 — exp(—r?). On the other
hand, since we have restricted our attention to 2D inviscid
incompressible ffow, the Kelvin and Helmholtz theorems imme-
diately imply that both the circulation and vorticity of the
elements is constant. Thus, numerical integration of Eq. (8) is
all that is required to complete the formulatien of the method.
In the calculations, a second-order predictor corrector scheme
is used to advance the solution [25].

In some calculations, point-vortex schemes are used in lien
of the vortex method described above. The major difference
between the two approaches is that in the point-vortex approxi-
mation a discrete desingularization of the velocity field is per-
formed. Thus, for a collection of point-vortices specified as
{xi, UM, the discrete velocity field is given by

k= [2ngr@ds (o)

1 /() ~ xdn) Xk

wOa) = = o 2 T~ e OF

(1D

Implementation of the point-vortex scheme is similar to that
of the vortex method: Eq. (11) replaces Eq. (9); the remaining
aspects of the algorithms remain unchanged. (It is interesting
to note that while Eq. (9) defines a smooth field guantity, Eq.
(11) is only used to estimate the velocity of discrete vortices.)

2.3, Initial Conditions

In most calculations, we consider initial configorations corre-
sponding to three equal-strength concentrated voitices located
close to a solid potential boundary, The physicai boundary
coincides with the x-axis and restricts the motion of the vortices
to the semi-infinite upper-half plane. Physical variables are
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FIG. 1. Schematic illustration of the initial vorticity configuration.

normalized so that the circulation of the vortices I' = 2. Mean-
while, the geometry of the initial configuration is normalized
such that the triangle formed by the three vortices has one side
fixed on the y-axis, 0.5 << y << 1. The normalized coordinates
of the remaining vortex are chosen such that its “‘height”’ y =
0.75, but its abscissa is taken as a variable parameter, a =
0 (Fig. 1). Except in point-vortex simulations, the vorticily
distribution associated with the vortices is assumed to be
Gaussian with standard deviation o

_r (.7
co(r)fwgzexp( 0_2). (1)

The selection of the initial vorticity configuration is moti-
vated on one hand by its simplicity and on the other by previous
theoretical and numerical considerations which lead us to expect
a wide range of dynamical behavior {5, §]. In particular, selec-
tion of the number of vortices reflects theoretical results which
indicate that a minimum of three point-vortices moving close
to a slip plane is needed for chaotic motion to be possible.
Investigation of this aspect of the problem is presented Sec-
tion 3.

We finally note that consideration of the potential boundary
along the x-axis necessitates slight modification to the numerical
scheme. The no-normal flow boundary conditions at the wall
surface are enforced simply by accounting for the appropriate
image of the vortex system.

2.4. Acoustic Far-field

The acoustic far-field is estimated, based on the computed
evolution of the vorticity field. In doing so, two modelling
approaches are applied. The first model relies on the Powell--
Hardin formulation [12, 13], the second is an adaptation of the
two-dimensional Green’s function approach recently given in
[17]. Since the details of the implementation differ significantly
from one mode! to the other, these are summarized indepen-
dently below.

The Powell-Hardin Formulation

The Powell-Hardin formulations is based on two major as-
sumptions: (i) a 3D compact vorticity field and (ii) a compact
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source region; i.e., the size of the source region is small com-
pared to the acoustic wavelength. (For the presently considered
flow configuration, source compactness is reflected by the fact
that the characteristic size of the vortex sysiem, including the
image vortices, is much smaller than the relevant acoustic wave-
lengths). The predicted acoustic far-field is given in terms of
a convolution over the compact source region, as expressed by

w P 3B o L)y
pn) =g aldyd Ly A3

where X = (x;, X3, x;) is the position of the listener, ¢, is the
speed of sound, L = —u X & is the Lamb vector, d = x/{x].
and the asterisk indicates evaluation at the delayed time,

=t (xl/e,. (14)

In order to take advantage of the above formulation, we
simplify the analysis by: (1) assuming a three-dimensional
sound emission, {2) limiting the position of the listener to the
x-y plane, and (3) defining a finite *‘active emission zone"" by
restricting the contribution of the vorticity field to a distance {
along the spanwise direction. Implementation of these simpli-
fying assumptions allows direct application of Eg. (13) to both
point-vortex and vortex element computations. Derivation of
the corresponding acoustic pressure predictions are briefly high-
lighted in the following.

In point-vortex calculations, the vorticity field is modelled
as a collection of delta functions concentrated at the vortex
locations. By (i) inserting the corresponding distribution into
Eq. (13), (ii) using the velocity predictions given by Eq. (1),
(i) accounting for the image system of the vortices, and (iv)
invoking the source compactuess assumption, we get

o Pern & "
P(X t) A C},f‘3 d!z [ffyledy:I (15)
which yields

px,. )= (16)

ﬁr d.!‘"'

where the summation is taken cver the vortices in the top
half plane,

I x*&u

=2 v, — yinu
2y x4yt

, (17)

(&, ) are the components of the Lagrangian vector y;, and,
for brevity, the delayed time symbol has been omitted. Next,
using the fact that the impulse of the system,
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7= 2 T — nae), (18)
is a conserved quantity, Eq. (16) is simplified as
2 2
Jz:v(x,ar)—”—gﬁ—-)'c y d El"xu, (19)

Tckr o + vl dit

A quadrupolar noise emission is predicted whose intensity and
time evolution are determined by the ‘‘curvature of the moment
of vorticity signal’" as expressed by the summation term. How-
ever, the radiated noise directivity is not ‘rotating in time’’ as
is the case in most applications. This result can be interpreted
by noting that while the vortex system {which Jies on the top
half-plane) leads to rotating quadrupole emission, its image
system generates a similar quadrupolar emission which rotates
in the opposite direction. The combination of the “two emis-
sions™" is a single quadrupole with fixed directivity and maxima
parallel and perpendicular to the wail. The vanishing emission
at 45° and 135° inclination can be explained by noting that, for
these inclination angles, the invariant expressed by Eq. (18) is
recovered in Eq. (17), so that time derivatives cancel identically.

For vortex element calculations, derivation of the far-field
pressure starts by substituting the vorticity and velocity expres-
sions, Eqgs. (5) and (9), respectively, into Eq. (13). Under the
same assumptions previously invoked, the component form of
the resulting expression is expressed as

o

pix, )= 4—7r_c_2_5d32{ X+ vV + W], 20
where
U= fx vwdc dv' 21y
V= [y uwde' dv' (22)
W= [ (x' uw — ¥y va)dx' dy, 23)

where the integrals are taken over the entire x~y plane. Due to
symmetry about the x-axis and the fact that estimates are based
on the same time delay, W vanishes identicaliy. It also turns out
that I/ = V.

Thus, the problem is reduced to evaluation of a single infe-
gral. Unfortunately, if directly performed, this operation re-
quires an excessive amount of computational overhead. To
reduce this overhead, we first expand the integral in Eq. (21)
by inserting the component form of Eqs. (5) and (9). After
some lengthy but straightforward manipulations, Eq. (21) is
recast as

N N
r Z T, Zl I [f{x2 + (% — 2x)x + xfx - )
T (24)
wolX = {x — xb

el
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where x = (x, v} is the variable of integration, {(x;, y;} are the
components of the Lagrangian variable y;, and N is introduced
to indicate summation over the image sysiem. Next, we resort
to the polar decomposition of the vectors y; — x; — (R cos
¢, Ry sin ¢), and we implement the change of variables x —
(r cos(8 + @), rsin(@ + ¢), to obtain

B 1 N N
U=-5- ; T; ; T; [~ CARy) — cos(2¢)DAR;) 25)
+ (6 = 2) Cos(AIFLRy) + %6 — ) HLR,)1,

where

Cylx) = C(g); Dyfx) = D(g); Fyx)= 6F(§);
Hyx) = 6%"(%) (26)

Cx) = 51; : exp(~ri)r’

Izrrl —exp(—{r* + x? — 2xrcos 8]) dedr 27)

0 rt+ x* — 2xrcos §
e "
DXy = o= | expl~rr [

1 — exp(~[r? + x* — 2xrcos 6])
4+ xt— 2xrcos €

cos(2th db dr (28)

Fix) = ];j: exp(—rir?

2w | — exp(—[r’ + x* — 2xrcos )
jc’ rt+ x* — 2xrcos 8 cos #dfdr  (29)
I =
H(x)= %—jo exp(—rdr
1 | — exp(={r’ + x* — 2xr cos 6])
J" r+x?— 2xrcos ¢ dddr. (30)

In a preprocessing step, the functions C ~ H are tabulated on
a fine grid; the corresponding vectors are linearly interpolated
during the computations. Since the arguments of the functions
are essentiaily differences which are computed during velocity
evaluations, the acoustic pressure field is estimated at essen-
tially no additional cost.

Green's Function Approach

As an alternative to the above formulation, the two-dimen-
sional Green’s function approach proposed in [17] is also
adapted to the present problem, This approach aims at overcom-
ing difficulties associated with directly applying 3D formula-
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tions—these were circumvented in the previous approach by
assuming a compact ‘‘active emission zone.”” To do so, a 2D
solution is derived based on combining Kambe’s analysis (26]
with a 2D Taylor’s expansion of the velocity potential [27].
Matching near-ficld and far-field solutions, the acoustic pres-
sure spectrum is expressed as

P = 2520, @) (c ) &

where @ is the frequency, HL is a Hankel function, and fo‘ is
the Fourier transform of the second moments of vorticity,

0,0 = [ vy X &y, ) dy. (32)

Thus, to adapt this approach to the present calculations, all
that is needed is the time evolution of ;. For brevity, the
procedure is only described for point-vortex calculations. Ac-
counting for the image system of the vorticity, the second-order
moments are obtained by a straightforward calculation; we have

e
Z Fl&nl 0
[Q51= = N ,
0 —; i,

(33)

where (&, %;) denote the components of the Lagrangian posi-
tions of the point-vortices. Once these second moments are
computed, the pressure spectrum is obtained by inserting the
transform of the signal results into Eq. (31). It is interesting to
note that the structure of the matrix given in Eq. (33) implies
the same sound directivity predicted by the Powell-Hardin for-
mulation,

3. RESULTS AND DISCUSSION

The dynamics of the vortex systems described in Section 2.3
are investigated using two modelling approaches. In the first
approach, core dynamics are neglected. The behavior of the
simplified system and the noise emission are studied using
both the point-vortex approximation and smoothed Gaussian
vortices. Corresponding results are discussed in Section 3.1,
The effects of core deformation are then examtined using the
vortex element method discussed in Section 2.2. Here, the
vortex cores are discretized using a large number of vortex
elements, whose motion is used to compute the dynamics of
the system as well as sound emission. Results of these simula-
tions are given in Section 3.2.

3.1. Non-deformable Core Model

As previously mentioned, this simplified analysis is con-
ducted using both point-vortex and smoothed Gaussian vortices.
In the former c¢alculations, the initial conditions are specified
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in terms of the initial strengths and locations of the vortices.
The calculations are thus used to examine the effect of the
initial configuration parameter ¢ on the behavior of the system,
In smoothed vortex calculations, a *‘frozen” Gaussian core
distribution is assumed. The core radii are measured in terms
of the standard deviation o of the Gaussian. In order to compare
between point-vortex and smoothed vortex predictions, a small
value o = (.05 1is selected (see Section 3.2).

Dynamics

The dynamics of the vortex system are interpreted in terms
of the computed trajectories of individual vortices. Selected
results are shown in Figs. 2—4 respectively for initial configura-
tion parameters ¢ = 0433 (equilateral triangle), a = 0.11
(isosceles triangle which represents an intermediate ‘‘transi-
tional’’ case), and a = 0 (degenerate case in which the three
vortices are aligned). The deformation of the system is also
illustrated by defining ‘‘centered’’ coordinates, measured in a
reference frame attached to the centroid of the system,
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Trajectories (a} and centered coordinates (b) of the point vortices for a system configuration with a = 0.433.

3 3
x=2 T/ 2T (34)

Using the symmetries of the system, it is easily observed that
the motion of the centroid is paraliel to the wall. Thus, by
absorbing translative motion, centered coordinates enable us to
focus on the deformation of the system. In addition, we may
regard these coordinates as a projection of the dynamical system
and the corresponding trajectories as a phase portrait.

For an initial configuration with ¢ = 0.433, Fig. 2 shows
that, as the system propagates downstream, the point-vortices
undergo a circular motion around the centroid. The motion of
the centroid itself is nearly uniform, showing less than 1%
variation in the propagation velocity. The trajectories are pre-
dominantly regular and are observed to be nearly identical
from one rotation cycle to the other. (The computations
predict a normalized rotation cycle frequency f. = 0.6).
Meanwhile, examination of the centered coordinates reveals
that a weak deformation of the system occurs, as the corre-
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FIG. 3. Trajectories (a) and centered coordinates (b) of the point vortices for a system configuration with a = 0.112.
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FIG. 4. Trajectories (a) and centered coordinates (b) of the point vortices for a systerm configuration with ¢ = 0.

sponding trajectories are confined to a thin disk around the
system centroid. In faci, the shape of the centered trajectories
suggests that quasi-periodic motion occurs. This expectation
is confirmed by a Fourier transform of the corresponding
signals (not shown) which shows that the spinning of the
system can be described by a discrete set of frequencies.
The lowest frequency—the fundamental mode—corresponds
to one rotation cycle around the centroid; the remaining
frequencies appear as higher order harmonics of the funda-
mental.

When the initial configuration parameter is decreased to
a = (.11, considerable differences in the dynamics of the
system are observed. The vortices no longer rotate regularly
around their centroid; occasionally, high-curvature spinning

4 Gaussian vortices
X Paint vortices

0 0.1

FIG. 3, Lyapunov exponents vs. configuration parameter & based on point
vortex calculations (%) and non-deformable Gaussian model with o = 0.05 {A).

motions occur, as indicated by the appearance of small knots
in the computed trajectories (Fig. 3). 1t is also interesting
to note that the centered coordinate curves now describe a wide
annuius. In particular, the quasi-periodic behavior observed in
the previous case is not recovered.

The departure from regular quasi-periodic motion is even
more dramatic in the case ¢ = (. As shown in Fig. 4, the
trajectories of the point vortices are highly convoluted, and
the appearance of small knots is frequent. Meanwhile, exami-
nation of the motion in the centered coordinate system shows
that the trajectories almost fil an entire circle around the
ceittroid of the system. This suggests that a transition to
chactic behavior has occurred. In order to further examine
the situation, the Lyapunov exponents associated with each
Lagrangian coordinate are computed. Since larger exponents
are indicative of more chaofic system behavior, we focus
our attention exclusively on the leading exponent, A. The
procedure for obtaining the corresponding estimates are simi-
lar to those described in [28]. It is based on locally perturbing
the location of the vortices, one at a time, and computing
the divergence of the trajectories, measured in terms of
the Euclidean distance between perturbed and unperturbed
Lagrangian locations. The results of this exercise are summa-
rized in Fig. 5, which depicts the dependence of A on a
for both point-vortex and Gaussian model calculations. In
accordance with our previous expectation, a transition to
chaotic motion is observed to occur around a = 0.11. As
a decreases below this value, the leading Lyapunov exponents
increase abruptly from very small values to a plaieau of
height 1.5.

Finally, we note that essentially the same behavior is
observed in the non-deformable Gaussian model. This is not
surprising since the non-deformable Gaussian calculations
yielded almost identical trajectories (not shown). Conse-
quently, it is emphasized that the observed dynamics reflect
the properties of the modelled system and are not affected
by the modeiling approach.
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f (H2)

FIG. 6. Acoustic pressure spectra for an initial system corfiguration with
a = 0.433, estimated using Eq. (19) (solid) and Eq. (31) with wy, r/ee =
10 {dashed).

Sound Emisston

There appears to be a strong relationship between system
behavior and radiated noise. To highlight this relationship, the
far-field acoustic pressure spectra are computed using both
the prediciions of the Powell-Hardin formulation and the 2D
Green’s function approach. Since we are primarily interested
in the structure of the acoustic spectrum, constant terms and
{(the quadrupolar) spatial dependence are factored out from
the pressure predictions, The remaining time signal is then
transformed to Fourier space and interpreted as a frequency
spectrum. Results for initial configurations with a = 0.433 and
a = 0 are shown in Figs. 6 and 7, respectively. Below, we

0 4 8 12 16 20

f (Hz)

FIG. 7. Acoustic pressure spectra for an initial systern configuration with
a = 0, estimated using Eq. (19) (solid) and Eq. (31) with ary, /¢, = 10 (dashed).
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attempt to relate the structure of these spectra and the predicted
noise levels to the dynamics of the system.

The quasi-periedic motion obtained for an initial configura-
tion with @ = 0.433 appears to be reflected in the far-field
pressure spectrum. In this cagse, Fig. 6 shows that the spectrum
is dominated by a discrete set of harinonics. Detailed compari-
son of these acoustic frequencies with those characterizing
vortex motion reveals that the first peak in the pressure spectrum
corresponds to the ‘‘fundamental spinning frequency” of the
system. This result is not surprising, in light of the large and
well-estabiished predictions in simpler configurations having
similar dynamics—in particular, those of a pair of corotating
point-vortices {17]. Meanwhile, the remaining frequencies ap-
pear as superharmonics of the fondamental. The first few har-
monics have amplitudes of the same order as the fundamental,
but the spectrum decays rapidly as we move to higher fre-
quencies.

On the other hand, the sound emission calculated for the
“chaotic”” solution corresponding to an initial configuration
having a = (0 has radically different features from the previous
one. As shown in Fig. 7, the far-field noise is characterized by
a broadband spectrum. The bandwidth of the noise emission,
estimated by comparing the high-frequency decay of the spec-
tra, is as about twice as large as in the previous case (¢ =
0.433, Fig. 6). In addition, while the peak sound inmensities
are assumed at about the same frequency, the corresponding
soundlevels are roughly 30 dB higher than those computed
before. Thus, the transition to chaotic motion is accompanied
by a substantial increase in noise emission and a transition from
a decaying discrete spectium to a broadband spectrum with a
slower frequency decay rate.

We conclude this section with a comparison of the acoustic
pressure predictions corresponding to the selected formulations;
in particular, justification for our adaptation of the 3D Powell-
Hardin formulation is provided. It is first noted that, while the
computed noise levels are not identical, the structure of the
spectra predicted using both formulations is essentially the
same. Regarding the origin of the amplitude difference, we first
note that the decay laws of both formulations are not the same.
In the Powell-Hardin formulation, the acoustic pressure ampli-
tude decays as the inverse power of the distance from the
acoustic source, as should be expected in a 3D formulation.
This may be immediately verified by inspecting the form of
Eq. (15). Meanwhile, for the 2D Green’s function approach,
an acoustic pressure decay scaling with the square root of the
distance from the source is anticipated. To verify this behavior,
which is implicitly embedded in the 2D expressions, we resort
to the integral representation of the Hankel function [29] to
recast Eq. (31) as

v te Y 2
P(X, 1) = By V2 /nmr f 0 exp(— &)} E¥2 j » (cu - z%—)

inj(m) exp]:— i(u(t - 5)] dw d&,

]
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where

_ Pxx; exp(—i(57/4))

By T8t T(5/2) (36)

The anticipated pressure dependence on listener location is now
evident in Eq. (35). In addition, the form of this expression can
be used to explain the observed similarity in pressure spectra. To
do so, we note that the higher contributions are due to locations
close to the observation plane, i.e., small £ values. These qualita-
tive predictions may also be appreciated by inspecting the sim-
plified form of Egs. (35)-(36),

P(x, 1) = il exp(—z’iﬁ) V2c,/mr

Bcir? 4

J : w0 (w) exp[-*im(t - 5)] do,

a

(37)

which is derived by using the large-argument asymptotic form
of the Hankel function instead of the above integral represen-
tation.

Unfortunately, the complexity of the 2D expressions does
not allow us to isolate the spatial and temporal terms in the
acoustic pressure predictions. In particular, a one-to-one com-
parison between the two formulations was not possible. When
using the 2D Green'’s function formulation, selection of differ-
ent values of r was found to affect the amplitude but not the
structure of the predicted noise spectrum. (In particular, the
value of r used to generate the *‘2D curves’” of Figs. 6 and 7
was selected so that the far-field assumptions is satisfied; we
used wy, /e, = 10, where wy;, is the angular frequency of the
first peak in the sound spectrum. The latter is also used to
verify that the compactness assumption holds; using a normal-
ized cutoff frequency f... = 20, the ratio of the source region
size to the shortest wavelength is approximately 1:10). Since
we are primarily interested in the radiated noise spectrum and
since both formulations are found to yield nearly identical
spectra, the Powell-Hardin formulation is selected in the fol-
lowing computations. This choice was based purely on the
simplicity of the adapted 3D expressions, which enable simple
isolation of the time-dependent behavior of the acoustic
pressure.

3.2. Deformable Core Model

In this section, a more realistic physical model is adopted
which accounts for the vortex core deformation. To capture the
core dynamics, the model emphasizes numerical discretization
of the core vorticily distribution using a large number of vortex
elements. The primary objective of this extension is to analyze
the impact of the dynamics ignored by the previous models on
the characteristics of noise emission.

While performing the computations, however, issues con-
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FIG. 8. Schematic Nlustration of the computational grid used to initialize
vortex element calculations,

ceming the numerical discretization arose which had to be
carefeully addressed. The first concerns the effect of numerical
discretization on the behavior of the solution. In particular,
when chaotic motion accurred, a fine discretization was found
necessary to ensure that the computed integral quantities are
independent from the selected values of the numerical parame-
ters. In addition, we had to verify that the large-scale features of
the solutions computed using deformable and non-deformable
models are in fact similar, so that comparison of the results
can be performed. Surprisingly, this turns out to be the case.

Due to the importance of the numerical discretization, we
start with a somewhat detailed account of the numerical discreti-
zation. Next, the computational study of the impact of numerical
parameters is briefly summarized. Results concerning far-field
noise spectra are then discussed.

Discretization

The procedure for vortex core discretization is essentially an
adaptation of that discussed in [25]. To summarize, vortex
elements are initially distributed on a computational grid which
is constructed by first defining N, radial stations within the
core, which describe circles that are concentric with the location
of the Gaussian core. The first radial station is simply identified
with the center of the vortex core and is represented by using
a single element. The remaining radial stations are separated
by a distance Ar in the radial direction, each carrying
8(i — 1), i = 2, ..., N,, vortex elements distributed uniformly
around the circumference, Thus, the second radial station has
eight elements, the third 16, and so on (Fig. 8).

Once the initial grid is selected, the voriex strengths are
initialized using a collocation procedure which requires that the
discretized vorticity distribution matches the initial condition at
the centers of the elements. Accordingly, a linear system of
equations is formed by setting the right-hand side of Eq. (5}
equal to the intended values, obtained by evaluating Eq. (12)
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TABLE 1

Summary of Discietization Parameters

Grid N, N N, Arla dior
! 4 49 147 0.43 0.84
2 5 81 243 0.325 0.33
3 6 121 363 0.26 0.82
4 7 169 507 0.231 0.82

at the y;'s. Inversion of this sytem then yields the strengths of
the elements. During this procedure, iteration over the core
values is performed in order to ensure overlap among neigh-
boring elements and to minimize the error between discretized
and assomed vorticity distributions {25].

In the simulations presented below, four different computa-
tional grids are used. The latter are constructed by selecting
grids having N, = 4, 5, 6, and 7; the corresponding number of
vortex elements N = 49, 81, 121, and 169, respectively. Since
three vortices are present, the total number of vortex elements
in the domain N, = 3N = 147, 243, 363, and 507. Thus, the
total number of elements is increased from one grid to the
other, in order to examine the effect of the numerical resolution
on the computed motion of the system. A summary of discreti-
zation parameters is provided in Table I. Recall that & denotes
the standard deviation of the initial Gaussian vorticity distribu-
tion, while &refers to the core size of individual vortex elements,

Summary of the Numerical Study

The adopted approach in the numerical study of computed
solutions consists_of first ensuring a time-accurate integration,
To this end, a'variable-step second-order predictor—corrector
method is adopted, and stringent criteria for time-step refine-
ment are incorporated. Accordingly, very small time steps are
selected in the computations; the simulation of a few vortex
turnover times is typically performed in over 100,000 iterations.
Thus, the independence of the computed solution from the
time-integration scheme and parameters is established for ail
reported calculations.

Consequenly, we concentraie on studying the impact of
spatial discretization on the behavior of the system. To limit
the effort, we restrict our attention to the vortex system having
initial configuration parameter ¢ = 0. This choice is based on
the resuits of the above computations, which indicate that the
corresponding (point-vortex/non-deformable Gaussian) con-
figuration exhibit chaotic dynamics having the highest esti-
mated Lyapunov exponent. In other words, within the parameter
range of interest, the seleciion is believed to provide the most
challenging test for the computations. In addition, since we are
interested in comparing our results with those of point-vortex
computations, a small value of the core radius, o = 0.05 is
chosen.
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Figures 9-11 show results of the computations, initialized
respectively using grids having &, = 81, 121, and 169; for
brevity, the results for ¥, = 49 are omitted. The computations
are carried out until ¢+ = 6 (the rotation cycle of a single vortex
f~ 1). In all cases, the number of integration steps exceeded
220,000, Comparison of Figs. 9-11 shows that, while a close
agreement in the large-scale structure of the flow is evident at
small time (r < 2}, significant differences among the predictions
of varions discretizations can be observed at later stages. This
result is not totally unexpected, but analysis and interpretation
of the results must be carefully performed. Specifically, we
first note that the large-scale motion of the vortices resembles
that computed using non-deformable core simulations (Fig. 12),
which seems to indicate the same chaotic pattern exhibited by
non-deformable core vortices, As a result, chaotic dynamics
are also manifested in the more elaborate deformable core
model. On their own, these dynamics would place a time-span
limitation, beyond which amplification of round-off error alone
would cause divergence of a particular selution. More impor-
tantly, these difficulties are compounded by the accumulation
of spatial discretization errors, which may be amplified by
chaotic system dynamics. Thus, the guestion is whether the
discretization is fine enough so that confidence in the computed
solution can be established for the entire simulation.

To address this issue, comparison of the acoustic source term
U in the four cases is performed. The resulis of this comparison,
which is motivated in part by the *‘sensitivity’’ of the integral
quantity to flowfield dynamics [30], are plotted in Fig. 13. The
latter depict the time signals of U, for ¥, = 49, 81, 121, and
169. In the lower resolution runs N, = 49 and 81, acoustic
source terrn predictions are seen to deviate significantly for
t > 2.5. In the intermediate cases, N, = 81 and 129, the time
at which substantial deviation is first detected is slightly de-
layed. On the other hand, the signals are almost identical
for the entire simulation in the higher resolution runs, ¥,
= 121 and 169. Thus, by increasing the spatial resolution,
predictions tend to converge. Moreover, the similarity between
the computed solutions with ¥, = 121 and 169 prompts us to
stop further refinement; results discussed below are based on
the fine discretization having N, = 169.

The observed behavior in the *‘convergence” of the solution
may look surprising, in view of theoretical analyses which
indicate an essentially second order in space numerical scheme
[24]. Specifically, assuming that spatial errors are amplified
exponentially in time at a rate that is **proportional’’ to the
Lyapunov exponent, a relatively modest increase in the number
of elements would not be expected to yield an appreciable
improvement in the spatial interval over which consecutive
refinements agree. In particular, the dramatic improvement ob-
tained as we move from the lower to higher resolution cases
may appear strange. However, this behavior may be explained
in light of numerica! studies which indicate that deterforation
in spatial resolution is primarily due to loss of overlap among
neighboring elements, as caused by the severe deformation of



236 KNIO, COLLOREC, AND JUVE

4
4
4
y
i
E

© T - ) T
ars) @ 4 ara} @ !
@ 1} ool @ 1

028t + c.e5} +

“ﬁlrs —i?c .28 27 a}s c.?a [AZ °‘°-39 2 a.:m afa a.‘Es 0.;50 1.:.': 140
t=0 t = 1.0589

188 -+ t -+ — t £.50f ; f —— -+ +

a5t 1 sl 1

0.78 \@ + 0.75h @ 4
o501 @I + 0.50| N & +

025 I + 0.28 ’-‘ T
s R TS}
1.30 1.55 1.80 135 1,60 .85 210 2.35 2.50 ks
b= 2,151 t = 31649
r.JaT— f + + - ~+ 1.5+ + P -t + + —— -+
r2el + raat . . +
g % e
1.00} . @ T f UOI- ) -l—
! ) b R
Ty L

arsf ’ 1

. N

Al -

+ .76} ' )
, 1
u@ MI .
=

0.5} + azsl . +
.00 . . . | . e . , .
(AT RS T RS TR I} TR\ T A b LR M) Yi 3
t = 4.2258 e $less MW

FIG. 9. Vornex element reprasentation of the evolution of the vortex systern having o = ¢ and ¢ = 0.05, computed using a grid with N, = &[. The plots
are generated by drawing the locations and instantaneous velocity vectors of all vortex elements. Frames are generated every 40,000 computational time steps;
elapsed tumes are indicated.



NUMERICAL STUDY QF SOUND EMISSION

1.50 ~+ + + + ~
1,251 4
,. © |
ars} @ +
0.50 L +
[-¥_.1 3 T
0.00 . " . . .
~G.78  -03¢ -0.25 .50 0.25 o.50 .78
t= 0

1,50/ ¥ % . + 4

(.1 3 ‘lL
.00t . .J‘

|
1 '\ l
.78+ \ +
'3
agop . \& 1
azs) = 1
A7 0.55 o5e T AT 755 1.80
= 2.107
1.5% - e -+ . 4
1.25F h 4
’ /_ M
100k @ . 1
. 1 2y
.75k ! +
y \\
\\\ L I

a.50p 3
[ %713 - -|-

o n?.l.‘! 30 43 Z“iﬂ l:h& J.‘fﬂ

T = 42229

150 —+ + -+ + -+
mf- T
.00 @ 1
076 @ T—
480} @ +
0.28) |- -||—
e FATS e ryy A7) N 1.
t = 1.0520
1. e} ¥ . + ¥
1.28) * WL
~
Lodt @ J(
+
! )
a.s0k & ’ +
.25 - 1
S99t 75 1.85 210 z.'ﬁs 2.'80 2.
{= 88
1.501 e} - e e
1.25] ~ +
’ v
T
N |
078 . i 1
1\ by ,
- 1 K7 {
.80} @ -
. N
oza] - 1
e 7 R T R R R B
t= 52764

237

FIG. 18, Vorex element representation of the evolusion of the vortex system having ¢ = 0 and & = (.05, computed using a grid with N, = 121, The

plots are generated as in Fig. 9.



238 KN10, COLLOREC, AND JUVE

4 e " ’ 3 . z0| L 4 i

T+ i.zsr j-

e

| X

avsf ° ¥ oy @ i

#-rl I
ua[ T+ MT ' +
O.HI- -+~ ;.2‘- - T
e . | N .
Y L i L 5 :n 3 I - i -
R T ¥ 5T Y T R R YT R ) L T T B LT R T PP ) R T R Y
t=0 t = 1.0498 :
= T & o T T -
f. T - —rr - T 1. i 4 Il e}
[} A —L 1.28 <+

o8}k 4 erst @ ]
* .’ E g /
'a ~ J - ’ J
e.5ap < - .80k , . N

IR
oss + usl- . +
——— el . e ——— e = - —— - - - s o —— -
0"3,:0 0.55 a.la'o .65 - -1.30 .58 1.80 ""'\f.zs r.i’# f.i!s B _J'r&, - F:rs z.Le 255
t = 2.0992 t = 3.7460
e N LN P SEESNAESaE S
. + 1.25( . X +
. | e v L
] - 7. o . E
. o
: i :
r, o+ o.75¢ 1
e .
1 0.0 {
T "“‘?} T
ENV T45 R % B

4 -38
t = 52533

FIG. 11. Vortex element repfesenlati.on of the evolution of the vortex system having a = 0 and o = 0.05; compuied usiﬁg a g{'id with N, = 169. The
plots are generated as in Fig. 9.



NUMERICAL STUDY OF SOUND EMISSION

F1G. 12. Trajectories of the centroids of the three vonices for the sysiem
with ¢ = 0 and & = (.05, computed using a grid with ¥, = 169,

the Lagrangian mesh by the prevailing strain, Since the initial
degree of overlap also increases as the resolution is refined,
the onset of such a phenomenon is substantially delayed. Thus,
the observed behavior is consistent with recent experiences
using Lagrangian particle methods [20, 31, 32].

Before discussing radiated noise behavior, we provide two
brief comments on (i) the evolution of the system having g =
0.433 and (ii) the selection of the core radius in the simulation.
Regarding the first item, we note that the large-scale motion
of the vortices in this “‘regular’” system also resembles that
predicted in the non-deformable model (Figs. 14 and 15). The
trajectories of the centroids (Fig. 18) of the vortices are nearly
identical to those computed in the non-deformable core model.
However, it is interesting to note that in this case the core
deformation appears to be much milder than in the chaotic
case. This is not surprising since, contrary to the chaotic case,
the vortices are always well separated and do not appear to
interact (see Figs. il and 14).

The selection of the core radins was based on brief numerical
experimentation which aimed at avoiding pairing events. This
motivation stemmed primarily from our desire to perform a
comparison with the results of simpler models, both point-
vortex and non-deformable Gaussian simulations. At the same
time, selection of very small core radii was undesirable, due
to small time-step limitations associated with the very fast
spinning motion around the core. Thus, at the start of the stady,
the two configurations having 4 = 0, ¢ = 0.1 and 0.05 were
considered. However, for ¢ = (.1, pairing of the three eddies
occurred quickly (Fig. 16). Thus, the smaller valve of o was
chosen for comparison with non-deformable core models and
for the numerical study.

Radiated Noise

The noise radiated by the system of deformable core vortices
is computed using the Powell-Hardin formulation, following
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the procedure detailed in Section 2.4, We focus first on the
system having the initial configuration parameter a = 0.433,
for which regular trajectories were predicted. The results are
given in terms of the acoustic pressure spectrum, plotted in
Fig. 17. In computing this spectrum, the same procedure used
in previous calculations is adopted; i.e., the time-dependent
behavior of the acoustic pressure field is isolated by absorbing
constant and spatial terms from the corresponding predictions.

The aconstic pressure spectrum predicied uvsing the de-
formable core model differs significantly from that derived
based on non-deformable core models. For deformable core
computations, the pressure spectrum is characterized by two
frequency bands. The high-frequency band is characterized by
a finite top-hat proftie and is distinguished by higher sound
levels than those of the low-frequency band. Meanwhile, the
low-frequency band resembles that predicted by the non-de-
formable core model, and the appearance of a discrete set of
harmonics can still be detected. Unfortunately, detailed resolu-
tion of the corresponding portion of the spectrum could not be
performed in this case, since the computations are stopped at
a much shorter time than in non-deformable core simulations.

Due to the relative simplicity of the large-scale motion of
the system, interpretation of the low-frequency behavior of the
acoustic pressure spectrum can be easily provided. To this end,
we first recall that the radiated noise is given by time derivatives
of second-order moments of vorticity. In turn, these moments
may be decomposed into two components: one due to the
motion of vorticity centroids—i.e., to large scale vortex mo-
tion—and the other associated with the deformation and reorga-
nization of the core vorticity distribution [33]. To emphasize
this point, we start with Mohring’s [14] “*source term,”

Q; = J xlw X x); dx, (38)
and consider the contribution of a 2D patch of vorticity lying
within a circular circumference § and having centroid y. By
defining a coordinate system, r, centered around the centroid
of the patch, we may recast Bg. (38) as

Oy = (X y); + fs ri{w X r);dA, (39

where I' is the {constant) circuiation vector of the vorticity
patch. Thus, our claim may be justified simply by noting that
the first term on the right-hand side of Eq. (39) depends solely
on global vortex motion, while the second reflects the internal
dynamics of the vortex core.

For the presently considered case (a = 0.433), the motion
of the vortex centroids are virtually the same as those computed
using non-deformable core models. Consequently, by approxi-
mating the motion of the system by that of vortex centroids, i.e.,
by ignoring core deformation, the acoustic pressure spectrum
predicted by the simpler models is recovered. In fact, the curves
of vortex trajectories and the low-frequency portion of the
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FIG. 13. Comparison of the acoustic source term U for the vortex system
having &« = 0 and ¢ = 0.05, computed using grids with (a) N, = 49 and 81;
(b} N, = 8l and 121; {c) N, = 121 and 169.

acoustic pressure spectra computed using both deformable and
non-deformable cove models could not be distinguished in com-
parison plots. Thus, these plots are omitted.

An immediate consequence of the arguments provided above
is that the coniribution of the large-scale unsteady vortex motion
to radiated noise is restricied to the low-frequency band of the
acoustic pressure spectrum. Accordingly, the appearance of the
high frequency band is associated with core vorticity reorgani-
zation. Although the flowfield illustrations given in Fig. 14
indicate that the-vortices remain nearly cireular, more detailed
analysis reveals that a highly nontrivial motion occurs within
their cores. This motion appears to be dominated by inviscid
instabilities of the core vorticity distribution, which lead to
repeated filamentation of the vortex core (e.g., [341). The occur-
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rence of a weak inviscid instability was confirmed by indepen-
dent tests of an isolated perturbed Gaussian vortex (not showny),
which also cxhibited a core reorganization in the form of a
repeated filamentation process.

Acoustic pressure predictions in the chaotic case (& = 0)
also differ from those based opn non-deformable core simula-
tions. These differences are illustrated by comparing the results
of Fig. 18, which shows the acoustic spectrum in the deformable
core simulation with N = 169, with their point-vortex counter-
part (Fig. 7). While in both cases a broadband noise scattering
is obtained, a much broader frequency spectrum is obtained in
deformable core simulations. As in the previous case, the latter
are distinguished by the presence of a high-frequency hump
centered around the characteristic spinning frequency of indi-
vidual vortices. However, the peak pressure levels in the high-
frequency band are now comparable to the low-frequencies
amplitudes. On the other hand, low-frequency noise predictions
are similar to those of point-vortex calculations, both concern-
ing the mode of sound emission and acoustic pressure levels.
Thus, the high-frequency portion of the pressure spectrum ob-
tained in the more detailed simulation appears as a simple
extension of the curve obtained in the frozen core model.

Unfortunately, interpretation of chaotic system simulations
requires a more elaborate analysis than that previously per-
formed. In this case, the analysis is faced with additional diffi-
culities due to lack of close agreement between the two models
regarding the large-scale system motion. These differences,
which could be observed by close inspection of the trajectories
of vortex centroids and of point-vortices (e.g., by comparing
Figs. 4 and 12), are highlighted in Fig. 19. The figure compares
the trajectory of the lower vortex in the frozen core simnulations
with that of the centroid of the corresponding vortex in the
deformable core computations. While these trajectories are in
close agreement at early stages, they diverge rapidly at later
times. This is not surprising since we do not expect the point-
vortex model] to hold at all times. In fact, breakdown of the
cotresponding approximation should be expected in this case,
as strong interactions among vortices occur which result in the
stripping of fluid layers from the outer edges of their cores.

To overcome this difficulty, comparison between the predic-
tions of deformable and non-deformable core models is per-
formed in two steps. In a first step, we approximate the motion
of the system by that of the vortex centroids. Based on this
approximation and relying on the Powell-Hardin formulation,
we compute an equivalent acoustic source term following the
same procedure used in the deformable core model. This source
is then differentiated in order to derive a simplified noise spec-
trum. Next, we rely on the arguments presented earlier in this
section and associate this spectrum with the contribution of
large-scale motion to noise emission. Thus, the acoustic pres-
sure spectrum is unambiguously decomposed into two compo-
nents, without resorting to the point-vortex approximation. The
results of this analysis are shown in Fig. 20, which depicts
pressure spectra obtained using (i) the deformable core model,
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(ii} the point-vortex approximation, and (iii) the aforementioned
centroid approximation. -

The results of this analysis are used to further explore the
origin of the high-frequency noise band observed in the de-
formable core computations. Specifically, the question being
posed is whether internal core dynamics lead to the observed
high-frequency emission (i} directly, i.e., by direct contribution
to the acoustic pressure source term, or (i1} indirectly, by causing
high-frequency oscillations in the positions of vortex centroids.
The curves shown in Fig. 20 support the former interpretation,
since the impact of centroid motion has a small contribution
to the high-frequency band observed in deformabie core simula-
tions. Consequently, the high-frequency noise band is due to
the spinning of the deformed eddy cores. Thus, the correspond-
ing mode of sound ernission is associated with “‘inherently
noisy eddies,”” and not with the large-scale motion of de-
formable core vortices. On the other hand, low-frequency noise
emission appears to be entirely due to large-scale vortex motion.
This claim is supported by the fact that all three curves plotted
in Fig. 20 yield similar predictions at low frequencies.

4. SUMMARY AND CONCLUSIONS

In this work, the noise radiated by the inviscid, unsteady
(regular and chaotic) motion of arrays of vortices over a flat slip
boundary is numerically investigated using two-dimensional
vortex methods. The methods are based on the discretization
of the vorticity field into Lagrangian vortex elements. The
elements are advected along particle trajectories using the local
velocity vector, obtained in terms of a desingularized Biot—
Savart convolution. '

According to the adopted desingularization approach, differ-
ent flow models and numerical schemes are obtained. The sim-
plest model considered uses the point-vortex approximation,
which collapses the core vorticily into concentrated Dirac
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masses whose velocities are estimated by removing the singular
part from the corresponding Biot—Savart integral. A variant of
the point-vortex simulation is also employed with approximates
the core vorticity distribution by a frozen Gaussian. In both
approaches, vortex core dynamics are ignored and the methods
are referred to as non-deformable core models. Core dynamics
are directly accounted for in a third approach, which relies on
a 2D field method in the simulation of the flow. All three
approaches are applied to study flowfield dynamics and to
analyze their effect on radiated noise.

Flowtield evolution and dynamics are first interpreted in
terms of the initial configuration of the vortex system. The
latter consists of an equal-strength 3-vortex system adjacent to
a slip plane, arranged in a triangle whose base is fixed and in
the direction normal to the boundary. A one-dimensional family
of initia! configurations is considered by moving the third vortex
along the direction of the boundary. Depending on initial condi-
tions, regular or chaotic motion is observed in non-deformable
core simulations. Detailed analysis of the vortex trajectories
reveals a sharp transition from regular to chaotic motion as the
aspect ratio of the initial configuration is decreased.

When regular motion prevails, a discrete far-field sound spec-
trum is predicted which is dominated by the fundamental spin-
ning frequency of the system and of its superharmonics. Acous-
tic pressure amplitudes are comparable to the fundamental one
for the first few harmonics, but decay rapidly for higher frequen-
cies. Thus, noise emission Is limited to a narrow band which
is bounded below by the fundamental one.

Dramatic differences in sound radiation are observed when
chaotic motion occurs. In this case, broadband noise generation
is predicted and the computed sound levels are significantly
higher than in the previous case. While in both cases the acoustic
spectrum peaks at about the same frequency, the sound ampli-
tude decay at higher frequencies is slower in the chaotic case.
Thus, chaotic motion is distinguished by a substantially broader
sound radiation.

In all cases considered, the mode of sound emission closely
reflects the dynamics of the vortex system. The discrete set of
sound frequencies observed when reguiar motion is predicted
coincide with the quasi-periodic spinning of the vortices around
the centroid of the system. Similatly, the broadband sound
emission predicted for chaotic systems mirrors the complex
knotted trajectories of individual point vortices.

1t is finally emphasized that, when a “*small’” core radius is
selected, predictions of the frozen-Gaussian model are found to
be almost identical to those of the point-vortex approximation.
Consequently, results computed using the non-deformable core
models are independent of the procedure used to desingularize
the Biot—Savart convolution. Thus, as long as core dynamics can
be ignored, the models are expected to yield good approxima-
tions of the motion of corresponding vorticity distributions. In
particular, valid approximations are anticipated whenever con-
centrated vortices remain well-separated and do not interact vig-
orously.
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FIG. 16. Vortex element representation of the evolution of the vortex system having @ = 0 and o = 0.1, compuited using a grid with N, = 169. Frames
are generated every 20,000 compurational time steps; elapsed 1imes are indicated.
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FIG. 17. Acoustic pressure spectrum for a vortex configuration having
a =0.433 and o = 0.05, computed using a grid with N, = 169, The dependence
on listener location has been factored out of the acoustic pressure prediction
before computing the spectrum.

The impact of internal core dynamics on the behavior of the
systern and radiated noise are finally examined using a two-
dimensional vortex element method. Implementation of the
method is based on discretization of the vortex cores using a
large number of smooth vortex elements. Numerical study of
computed solutions is first performed in order to determine the
effects of the discretization. When chactic motion occurs, it is
shown that a fine core discretization is necessary to ensure that
the large-scale features of the solution are independent of
the choice of numerical parameters. Thus, an appropriate
refinement is first determined, based on the motion having
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FIG. 18. Acoustic pressure spectrum for a vortex configuration having
a = 0 and o = 0.05, computed using a grid with N, = 169. The dependence
on listener location has been factored out of the acoustic pressure prediction
before computing the spectrum.
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FIG.19. Comparison of vortex trajectories for an initial configuration with
a = 0, o = 0.05, computed using point—vortex calculations (sclid) and a
deformable core model with &, = 169 (dash).

the highest Lyapunov exponent, and subsequently used in
all deformable core compuiations.

When regular motion occurs, core dynamics have little
impact on the large-scale features of the system. In this case,
the trajectories of the centroids of the vortices are found to
be almost identical to those predicted by non-deformable
core models, All models yield similar low-frequency noise
emission. However, in deformable core simulations, the sound
spectrum is distingnished by the appearance of a high-
frequency band which is centered around the spinning fre-
quency of the individual vortices. The sound spectrum is
dominated by the high frequency emission, as the correspond-
ing pressure amplitudes are significantly higher than low-
frequency peak leveis. Thus, the internal motion within vortex
cores substantially alters the far-field sound signature,

On the other hand, internal core dynamics are found to
affect chaotic vortex motion. Departures from non-deformable
core approximations are recorded following strong interac-
tions, during which vortex cores approach each other and
stripping of fluid layers from their outer edges occurs. During
such events, vortices are subjected to violent strain fields,
which result in a large deformation of their cores and the
loss of the initial circular shape. However, the trajectories
of the centroids retain a shape which is similar to their
point-vortex counterparts, and the complex knotted pattern
observed in non-deformable core simulations persists,

Despite differences in computed vortex trajectories, all
models yield similar low-frequency sound prediction. How-
ever, as in the regular case, the generation of a high-frequency
noise band is recorded in deformable core computations. But
unlike the previous case, the high-frequency noise band does
not dominate the sound spectrum, as the corresponding
pressure levels are of the same order as the low-frequency
peaks.



NUMERICAL STUDY OF SOUND EMISSION

245

f (Hz)

FIG. 20. Acoustic pressure specira for the system having @ = 0, & = 0.05, predicted by (a) the deformable core model with ¥, = 169; (b} the point-
vortex approximation; and (c) approximating the motion of deformable vortices by that of their centroids. The dependence on listener location has been factored

out of the acoustic pressure prediction before computing the spectrum.

Analysis of the origin of this phenomenon points to a
weak inviscid instability within the Gaussian cores, whose
growth of the instability is amplified by the prevailing strain
field induced by all the vortices. Maturation of this instability
leads to a reorganization of the core vorticity distribution in
the form of a repeated filamentation process. It is shown
that the high-frequency noise radiation is directly due to the
spinning of deformed vortices.

Finally, we should emphasize that the present study of
the impact of core dynamics is restricted to a relatively
narrow set of initial conditions. By choosing a small value
of the core radius, which enables comparison with non-
deformable core models, detailed experimentation with differ-
ent core radii is avoided. Furthermore, analysis of the differ-
ences between model predictions is limited to an investigation
of the origin of these differences and of their relationship
to system dynamics. Thus, in-depth investigation of the fine
details of internal core motion and of their impact on noise
emission is omitted. This omission is on one hand due to
the necessity of even finer refinements than those considered
here. On the other, the authors believe that the exercise
should be conducted using a simpler configuration, in order
to avoid simultaneously tackling chaotic system dynamics and
the complexity spawned by small-scale internal core motion.
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